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ABSTRACT 

Some Mathematical methods of stochastic epidemic models are presented. Models are formulated for continuous 
time Markov chains and stochastic differential equations. The purpose of modelling is illustrated by studying effects of 
vaccination and also in terms of inference procedures for important parameters, such as the basic reproduction number 
and the critical vaccination coverage. Analytical methods for approximating the probability of a disease outbreak are also 
discussed. 
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Introduction 

Early modelling contributions for infectious disease spread were often for specific diseases. 

Forexample, Bernoulli (1970) aimed at evaluating the effectiveness a certain technique of 

variolation against smallpox, and Ross (1911) modelled the transmission of malaria. One of the 

general studies was made by Kermack and McKendrick (1927). Later important contributions were 

for example by Bartlett (1949) and Kendall (1956), both also considering stochastic models. We 

define the deterministic general epidemic model and derive some properties of it, then describe 

some cases where a deterministic model is insufficient, and end by defining what we called the 

standard stochastic SIR- epidemic model. Stochastic modelling of epidemics is important when the 

number of infectious individuals is small or when the variability in transmission, recovery, births, 

deaths, or the environment impacts the epidemic outcome in[1, 9]. This paper restricted to two types 

of stochastic settings, continuous-time Markov chains and stochastic differential equations in[2, 

10].We study the SIR model with some reasonable assumptions, then include herd immunity and 

vaccination. Hence both deterministic and stochastic epidemic models have their important roles to 

play however, the focus in the paper is on stochastic epidemic models. 

Stochastic epidemic models: Deterministic epidemic models 

The deterministic general epidemic model in [3] can be defined by two differential 

equations. It is assumed that at any time point an individual is either susceptible (s), infected (i) and 

recovered (immune) (r). Such individuals are from now one called susceptible, infective and 

recovered respectively. We shall make some general assumptions which are common to all models: 

only susceptible individuals can get infected and after having been infectious for some time t, an 

individual recovers and becomes completely immune for the remainder of the study period. Finally, 

we assume there are no births, deaths, immigration or emigration during the study period, the 

community is said to be closed ie, has a fixed size. A consequence of the assumptions is that 
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individuals can only make two moves, from susceptible to infected and from infected torecovered.  

For this reason, the model is said to be an SIR epidemic model. 

Let s(t), i(t), and r(t), respectively denote the community fractions (ie,
𝑆(𝑡)

𝑁
= 𝑠(𝑡),

𝐼(𝑡)

𝑁
=

𝑖(𝑡),
𝑅(𝑡)

𝑁
= 𝑟(𝑡)) and S(t) + I(t) + R(t) = N) of susceptible, infective and recovered. Since these are 

fractions and the community is closed, we assume that s(t) + i(t) + r(t) = 1 for all t ≥ 0. From the 

assumptions mentioned above, together with the assumptions of the community being homogeneous 

and people mixing homogeneously, the deterministic general epidemic model is defined by the 

following set of differential equations: 

𝑑𝑠

𝑑𝑡
 = - βs(t)i(t), 

𝑑𝑖

𝑑𝑡
 = βs(t)i(t) - α i(t), (1) 

𝑑𝑟

𝑑𝑡
=αi(t), where β– transmission rate parameter, α – recovery rate parameter These differential 

equations, together with the starting configuration s(0) = 1 - ε, i(0) =ε   and r(0) = 0, ε > 0 defines 

the model in [4]. 

The term βs(t)i(t) in equation (1) comes from the fact that susceptible must have contact 

with infective in order to get infected, so the assumption about uniform mixing implies that 

infections occur at a rate proportional to s(t)i(t). This term is non-linear which makes the solution of 

the system of differential equations non-trivial. By studying the differential equations to show that 

s(t) is monotonically decreasing down to s(∞) say, and r(t) is monotonically increasing up to r(∞). 

The differential equation for i(t) can be written as
𝑑𝑖

𝑑𝑡
 = i(t) (βs(t) – α).So, ifβs(t) > α, then i(t) initially 

increases (the disease will spread), and if  βs(t) < α, then i(t) decreases (the infection dies out), hence 

i(∞) tends to zero as t tends to infinity. Here 1/α is an average infectious period, α/β is the removal 

rate. 

Basic Reproduction number: 

The inverse of removal rate is defined as basic reproduction number and denoted by  

Ro:Ro = β/α                                                                                   (2)                                                                                                                                               

It is defined as the average number of secondary cases arising from an average primary case 

in an entirely susceptible population ie, the rate at which new infections are produces by an 

infectious individual in an entirely susceptible population. It measures the maximum reproductive 

potential for an infectious disease. 
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When Ro> 1 the epidemic takes off and when Ro<1 there is no big epidemic. The differential 

equations (1) can also be used to obtain a balance equation for the final state (s(∞),0,r(∞)). By 

dividing the first equation by the last we get 
𝑑𝑠

𝑑𝑟
 = - Ro s, which implies that  

s(t) = s(0)e-Ror(t). The fact that i(∞) = 0 implies that s(∞) = 1 -  r(∞), at the end of the 

epidemic there are no infective, only susceptible and recovered (immune).From this we get a 

balance equation determining the fraction u(t) = r(∞) that at the end of the epidemic were infected:  

1 – u(t) = (1 – ε) e – Rou(t)(3) 

Ro depends on disease and host population.Example, Ro = 2.6 for TB in cattle; 3- 4 for 

Influenza in humans;3.5- 6 for smallpox in humans; and16–18 for measles in humans [5]. 

Remark 

Is the deterministic epidemic models sufficient? We analysed the deterministic general 

epidemic model showed that: if Ro< 1 there will only be a small outbreak, and if Ro> 1 there will be 

a major outbreak infecting a substantial fraction of the community, and how big fraction is 

determined by equation (3). The results rely on that the community is homogeneous and that 

individuals mix uniformly with each other. 

Even if the assumption of a homogeneous uniformly mixing community is accepted this 

model may not be suitable in some cases. For example, if considering a small community like an 

epidemic outbreak in day care centre or school it seems reasonable to assume some uncertainty / 

randomness in the final number infected. Also, even if Ro>1 and the community is large but the 

outbreak is initiated by only one or a few initial infective it should be possible that, the epidemic 

never takes off in [6]. 

A standard stochastic SIR epidemic model 

We define the standard stochastic SIR epidemic model. Just like for the deterministic 

general epidemic model we assume a closed homogeneous uniformly mixing community. Let n 

denote the size of the community; S(t), I(t) and R(t) are the number of susceptible population, 

infective population, and recovered population at time t. Suppose that the time t = 0 these numbers 

are given by S(0) = n - m, I(t) = m and R(0) = 0. Infectious individuals have direct contact with other 

individuals randomly in time t at transmission rate β, and each such contact is with a randomly 

selected individual, all contacts of different infective being define to be mutually independent.  

The disease is transmitted instantaneously when the contact takes place and starts spreading 

the disease according to the same rules. Infected individuals remain infectious for a random time 

I(the infectious period), after which they stop being infectious, recover and become immune to the 
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disease. The infectious periods are defined to be independent and identically distributed having 

distribution ƒi and mean μ(i) = 1/α. The epidemic starts at time t = 0, new individuals get infected 

and eventually recover, up to the first time T when there are no infective in the community. The 

final state of the epidemic is described by the number R(T) (recall that I(T) = 0, so S(T) = n – R(T)). 

It has the mathematical tractability that whether or not an individual makes contact with two 

separate individuals are independent events with probability p = 1 – e – β/nα used in [7]. 

Model Properties: SIR continuous time Markov chain: 

The discrete random variables for the SIR continuous time Markov chain model satisfy S(t), 

I(t) ∈ {0,1,2....N}, where t ∈ [0,∞). The lower case s and i denote the values of the discrete random 

variables from the set {0,1,2,.....N}. The transition probabilities associated with the stochastic 

process are defined for a small period of time ∆t > 0; 

P(s,i),(s+k,i+j)( ∆t) = P(S(t+∆t),I(t+∆t)) = {(s+k,i+j)/(S(t), I(t)) = (s,i)} 

The transition probabilities depend on the time between events ∆t but not on the specific 

time t, a time - homogeneous process. In addition, given the current state of the processat time t, the 

future state of the process at time t + ∆t, for any ∆t > 0, does not depend in terms prior to t, known as 

the Markov property. For comparison purposes, the transition probabilities are defined in terms of 

the rates in the SIR ODE model: 

P(s,i),(s+k,i+j)( ∆t) = {βi
𝑠

𝑁
∆t + o(∆t), (k,j) = (-1, 1);  αi∆t + o(∆t),(k,j) = (0, -1);   

1- (βi
𝑠

𝑁
+  αi) ∆t + o(∆t), (k,j) = (0, 0);  o(∆t), otherwise.}(4) 

 ∆S(t) = S(t + ∆t) – S(t) and ∆I(t) = I(t + ∆t) – I(t), associated with the two events, infective 

and recovery. Given S(0) = N – i and I(0) = i > 0, the epidemic ends at time t, when I(t) = 0. The 

states (S,I), where I = 0 are referred to as absorbing states; the epidemic stops when an absorbing 

state is reached. The absorbing states are the states (s,i) with i = 0. 

Stochastic differential equations  

Differential equations for the transition probabilities can be derived from (4), these are often 

referred to as the forward or the backward Kolmogorov differential equations. The forward 

equations are used to predict the future dynamics, whereas the backward equations are used to study 

the end of the epidemic, such as estimating the probability of reaching an absorbing state.  

Note that there are (N + 1)(N + 2)/2 ordered pairs of states (s,i); (s,i) ∈ {(N,0), (N – 1, 1), 

...(0,0)}, where s+i ≤ N, and u ,v are two ordered pairs from the set of  (N + 1)(N + 2)/2. The general 

form of the forward and the backward Kolmogorov differential equations are 
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𝑑𝑃𝑢,𝑣(𝑡)

𝑑𝑡
 = ∑k≠u pu,k(t) q k,v – q u,u p u,v(t)                                                                                (5) 

𝑑𝑃𝑢,𝑣(𝑡)

𝑑𝑡
 = ∑k≠uqu,k(t) pk,v – q u,u p u,v(t)                                                                                  (6) 

Where the values of q k,v, q u,u and q u,k are defined from the transition rates in Equation (4) 

In the forward equations, the transition rates depend on the future state v = (s,i). If u is any 

state, for the process to be in state v = (s,i) at time t + ∆t, one of the following events occurs (1) the 

process transitions from u to (s+1,i-1) in time t and an infection occurs with transition probability 

β(s+1,i-1)∆t/N + o(∆t) or (2) the process transitions from u to (s,i+1) in time t and a recovery occurs 

with transition probability α(i+1) ∆t + o(∆t) or (3) the process transitions from u to (s,i) in time t and 

no change occurs with transition probability 1- (βi
𝑠

𝑁
+  αi) ∆t + o(∆t).  

 That is, Pu,(s,i)(t + ∆t) = P u, (s+1,i-1)(t)(β(s+1,i-1)∆t/N) + P u, (s,i+1)(t)α(i+1) ∆t + P u, (s,i)(t)                   

[1- (βi
𝑠

𝑁
+  αi) ∆t] + o(∆t). Subtracting P u, (s,i)(t) from both sides, dividing by ∆t, and letting ∆t→0, 

leads to the forward Kolmogorov differential equations, 

𝑑𝑃𝑢,(𝑠,𝑖)(𝑡)

𝑑𝑡
 = P u, (s+1,i-1)(t)(β(s+1,i-1)/N) + P u, (s,i+1)(t)α(i+1) - P u, (s,i)(t)(βi

𝑠

𝑁
+  αi),            (7) 

similar derivation applies to the backward equations, 

𝑑𝑃(𝑠,𝑖),𝑣(𝑡)

𝑑𝑡
 = P(s+1,i-1),v(t)(βsi/N) + P (s,i-1),v(t)αi - P (s,i),v(t)(βi

𝑠

𝑁
+  αi).(8)                                       

Herd Immunity and Vaccination 

One reason for modelling infectious disease spread is to understand how an outbreak can be 

prevented. Suppose a vaccine is available prior to the arrival of the disease spread, a fraction μ are 

vaccinated, all vaccinated individuals get completely immune. The number of initially susceptible is 

reduced from n – m to n(1 - μ) – m. Then the reproduction number Ro, after a fraction has been 

vaccinated, denoted Rμ satisfies Rμ = β(1 - μ) /α = (1 - μ)Ro, and the fact that a major outbreak is 

impossible if Rμ≤1.In terms of  μ this is equivalent to μ ≥ 1 – 1/Ro. The critical vaccination coverage, 

denoted μc and the fraction necessary to vaccinate in order to prevent a major outbreak, hence 

satisfies μc= 1 – 1/ Ro. For the numerical example given above, with Ro = 1.5 it follows that                  

μc= 1 – 1/ 1.5 ≈0.33 in[7]. This means that it is enough to vaccinate 33%of the community is hence 

protected, a state denoted Herd immunity. 

Discussion and Conclusions 

Mathematical models are very useful as guidance for health professionals when deciding 

about preventive measures aiming at reducing the spread of a disease. Stochastic epidemic models, 
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or minor modifications of them, can be used also in other areas. Example: Models for the spread of 

rumours or knowledge; Computer viruses in[8]. In conclusion, we analyzed and discussed the 

stochastic SIR epidemic model with various parameters. The model relies on these vital parameters 

because they play a part in determining epidemic states in population. And the vaccination can be 

several different ways. When it comes to new emerging severe infections, drastic measures like 

isolation, closing of schools and travel restrictions are often put in place. All these measures aim at 

reducing contact rate Ro. The effect of a specific preventive measure depends on the particular 

disease and also on the community under consideration. The SIR stochastic epidemic model has 

proven to be a reliable mathematical tool for examining epidemic status in a big community. 
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